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J. Phys. A: Math. Gen. 18 (1985) 1499-1503. Printed in Great Britain 

Spin-; lattice systems: a new approach to duality 
transformations 

Hkctor J Giacomini 
lnstituto de Fisica de Rosario, IFIR CONICET, UNR, Pellegrini 250, 2000 Rosario, 
Argentina 

Received 20 June 1984 

Abstract. A straightforward algebraic technique is introduced in order to establish duality 
relations between spin-; lattice systems. A new self-duality relation is found. 

The duality transformations were put forward by Kramers and Wannier (1941) for the 
square Ising model using the transfer matrix formalism. 

Onsager, by introducing the dual lattice, gave a topological picture of the dual 
transformations (Wannier 1945) and thus they were extended to varieties of two- 
dimensional lattices. 

No major progress occurred until the early 1970s. During 1971 Wegner established 
duality relations for generalised Ising models. However he does not provide a simple 
method for explicitly constructing these dual theories. Afterwards Merlini and Gruber 
(1972) presented another derivation of such transformations, using a mathematical 
formalism based on the group properties of general lattice systems. 

In the present paper we introduce a new method for deriving duality relations. It 
is a very simple algebraic procedure applicable to generalised Ising models (we call 
a generalised Ising model a set of Ising variables interacting with an arbitrary Hamil- 
tonian in any spatial dimension). 

We will not work in the general case but show the technique applying it in some 
usual models. The general procedure will be easily introduced by the examples 
considered in the following. 

In all the cases we will consider a lattice with periodic boundary conditions. 
( a )  Ising model with external field in a square lattice. The partition function is 

S \ X  

where K ,  = h /  kT and K z  = J /  kT, x indicates a generic point of the lattice and p and 
Y are unit vectors in the horizontal and vertical directions respectively. 

As is well known (1) can be written as 

= [cosh(K,) CoshZ(Kz)IN c n (1  + a,sx)(l + azsxsx+w)(l + a2sxsx+,)  (2) 
s x  

with al  = tanh( Kl) ,  a2 = tanh( K 2 ) ,  and where N is the number of lattice sites. 
The first step of our method consists in expanding the products that contain the 

interactions, by introducing variables which take the values zero and one (Savit 1980). 
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In the present case two variables of this type are needed. It leads to 

Z =[cosh( K, )  cosh2( K2)IN n (1 + ~ , s , ) c Y ~ ~ + " ' ~  S, n ~ + m ~ f " ~ - - f m ~ - Y .  

s,n,m x 
(3) 

The s variable is decoupled in (3) and it can be summed up, giving 

Z = [2 cosh( K , )  cosh2( K2)IN fl a;\'"fC5,(n, + m, + n,-,, + m X - " )  
n.m x 

+ (u ,8 , (nX+ m,+ n,-,, + mx-v  + l ) ]  (4) 

where S,(n) is a Kronecker delta function modulo two. It is zero if n is odd and one 
if n is even. 

Now, instead of solving the constraint imposed by the delta functions (Savit 1980), 
we express them as follows: 

~,(n,+m,+n,_,+m,_,)=~(s ,  I ( 1 )  s, (2 )  S , - , , S ~ ? ~ + I )  ( 1 )  

(5) 
( 1 )  ( 2 )  ( 1 )  ( 2 )  a,( n, + m, + n,-,, + mx-,, + 1) = f( 1 - s, s, S , - ~ S , - ~ )  

where we have introduced Ising variables according to 

s:) = 2n, - 1 sy'=2mX-1.  (6) 

Therefore, by using the identity 

and taking into account (5) we obtain 

where we have changed the signs of the unit vectors CL and v, based on the symmetry 
of the lattice. Moreover we have called 

l - f f t  
l + a ,  

1-a2 
1 + ff, 

U - exp(-2K,) 

U 2 -  - exp(-2K2). 

1 -  

(9) 

If we associate the variable s(') with the vertical links of the lattice and s(,) with the 
horizontal ones, the well known duality relation between the Ising model with external 
field and its gauge invariant version is obtained (Wegner 1971, Balian et a1 1975). In 
particular, in the limit h + 0 the Kramers-Wannier self-duality relation results (Balian 
et a1 1975). 

The fundamental fact of the above calculations has been to associate a new Ising 
variable at each interacting monomial term of the original Hamiltonian. 

( b )  The second model that we will analyse is the triangular lattice with two-body 
anisotropic interactions. Before we consider this model we will set up some basic 
notation. For each variable K, = J , / k T ,  we define a dual variable KF by 

exp(-2K,) = tanh(KF). (10) 

E = [$ sinh(2KI) sinh(2K2) ~inh(2K,)]"~.  (11) 

Besides, given three interaction coefficients K,, K2,  K,, we call 
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From K T ,  K f ,  K f ,  we define R, MI, M2,  M ,  such that if a, b, c, d are any four spins 
with values *1 

1 exp[-( K T a  + K T b  + Kfc)d ]  = R exp( M,bc + M2ca + M , a b )  (12) 
d 

where 
e4M,= cosh(KT+ KT+Kf)cosh ( -KT+KT+Kf)  

cosh( KT - K f  + K f )  cosh(KT+ K f  - K f )  

cosh( K + K f  + K f )  cosh( - K f + K T + K f )  e4M2 = 
Cosh( K f  - K T + K f )  cosh( KT + K f  - K f )  

R = 2 exp(-M, - M 2 -  M , )  cosh( K T +  K $ +  K ? ) .  

These expressions are the algebraic form of the ‘star-triangle’ relation (Wannier 1945, 
Baxter 1982), and will be useful in the following. 

For brevity we will set 
s:+fi I )  = s: 

S ( , t f i + u  = S:n 

s, = 

(14) ( 8 )  s : Iy  = s; 

as shown in figure 1. 

5 S’ 

Figure 1. 5, 5’ ,  s”, 5”’ are four spins round a face of the square lattice. 

The partition function of the triangular lattice king model is 

K,ss ’+  K2ss”+ K,s‘s’‘ 

where we have considered the triangular lattice as a square one with diagonal bonds. 
The above procedure leads to 

Z = fl exp(-KTs, - KTs,- Kfs , ) ( l  + slsis2sZs~s;). (16) 
SI9S2.Sj x 

In consequence we must solve the constraint s l s ~ s 2 s ~ s ~ s ~  = 1. With the aim of simplify- 
ing it we introduce the following change of variables: s1 + ~ 1 ~ 3 ,  s2+ s2s3. Then the 
summand in (16) becomes 

n X exp(-KTs,s, - K:s2s3 - KTs,)(l + s1sIs2sZ). (17) 
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Since sj is decoupled, we can sum independently over each s3 spin. Therefore, using 
the star-triangle relation above with 

a = s1 c = l  

b = s2 d = ~j 

we obtain 

2  ER)^ n exp(M,s,+ M,s,+ M3sls2)(1 + s , s { s , s ~ ) .  (19) 
S I . S 2  x 

Now, the spin set s,, s2 must satisfy the constraint 

The general solution of (20) is (Balian et a f  1975) 

where s is also an  Ising variable. In consequence 

Miss'+ M2ss"+ M,s's'' 

Therefore, the well known self-duality relation for the triangle lattice Ising model is 
obtained, but without the intermediate step that transforms to the honeycomb lattice 
(Syozi 1972, Baxter 1982). This fact shows the simplicity of our method. 

( c )  The last example that we will consider is a model on a square lattice, with four 
spin interactions, an  alternate three spin interactions and an  external field. 

The partition function is 

K , s  + K,S'S' 'S"~+ K3ss's"s''' 

The cases K 2  = 0 or K3 = 0 have been analysed by Merlini and  Gruber (1972). They 
showed that both models are self-dual. Using the same procedure as above we obtain 

(24) 

As in ( a ) ,  there is no constraint over the spin variables when an external field is present. 

s2 + S2Sl (25) 

n exp[-(K:s, + K,*s , s2+ K ~ s , s 2 s ~ s ~ s ~ ) ] .  

Z = ( 2 ~ ) ~  c n exp[-(K:s, + K f s 2 +  K : s { s ; s l : ' s 2 s ; s ~ s ~ ) ] .  
SI.SZ x 

Changing the variables as follows 

the summand in (24) becomes 

(26) 
X 

Now the spin s, is decoupled. Summing it up  for each site, and using again the 
star-triangle transformation, we obtain 

Z =  RE)^ 1 exp 1 M,s2+ M2sis5s?+ M,s,s;s;s~ . (27) 
s2 L ) 

Therefore the model is self-dual. This result is new to our knowledge. It is interesting 
to point out that this duality relation is the same as the relation (22) for the triangular 
Ising model. 
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When K, = O( M ,  = 0) or K ,  = O( M3 = 0) we recover the results of Merlini and Gruber 
(1972). For the case K ,  = O( M ,  = 0) the model is self-dual too. However, Merlini and 
Gruber (1972) affirm that the square Ising model and the two-dimensional triangular 
lattice with three-body nearest-neighbour interactions are the only self-dual system in 
two dimensions without an external field. 

Our results disagree with this statement. 
It is evident from the examples given that the method can be applied to any 

generalised Ising model, even if position-dependent interactions and external fields 
are present. 

All the known self-duality relations can be achieved with this technique. Besides, 
in simple models, the form of the dual ones can be analysed by simple inspection of 
the original theory. 

It is interesting to analyse three-dimensional systems with this procedure, because 
very few results about duality exist in these cases. Work in this direction is in progress. 
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